US 20210011695A1

a2y Patent Application Publication o) Pub. No.: US 2021/0011695 A1

a9y United States

MACHACEK et al.

43) Pub. Date: Jan. 14, 2021

(54) TECHNIQUES FOR AUTOMATICALLY
DETECTING PROGRAMMING
DEFICIENCIES

(71) Applicant: DISNEY ENTERPRISES, INC.,
Burbank, CA (US)

(72) Inventors: Jan MACHACEK, Manchester (GB);
Anirvan CHAKRABORTY, Wilmslow
(GB); Christian VILLOSLADA,
Ho-Ho-Kus, NJ (US)

(21) Appl. No.: 16/506,666

(22) Filed: Jul 9, 2019

Publication Classification

(51) Int. CL
GOGF 8/41
GOGF 8/71
GO6N 20/00

(2006.01)
(2006.01)
(2006.01)

(52) US.CL
CPC oo GOGF 8/427 (2013.01); GO6N 20/00
(2019.01); GOGF 8/71 (2013.01)
(57) ABSTRACT

A quality control (QC) engine analyzes sample code pro-
vided by a user and then generates example code that more
effectively performs the same or similar operations per-
formed by the sample code. An objective model analyzes the
sample code to generate one or more tags indicating the
intended objective(s) of the sample code. The quality model
analyzes the sample code to generate one or more ratings
indicating the degree to which the sample code achieves
each intended objective. The performance model analyzes
the tags and the ratings and estimates the performance of the
sample code when executed in a production environment.
The recommendation engine queries a database of code
based on the tags, the ratings, and the estimated performance
of the sample code to determine example code that achieves
the same or similar objectives(s) as the sample code, but
with at least one of higher ratings and greater performance.

TRAINING DATA 310 TRAINING ENGINE 300
e ——
TRAINING
CODE
312
R OBJECTIVE PREDICTED
MODEL TAGS
200 302
TRAINING
TAGS
314

US 2021/0011695 A1l

Jan. 14,2021 Sheet 1 of 6

Patent Application Publication

Hegt ino

¥C1 3000 FdAVX3

L Old

18et IND

(8TT (ot
A8vavivad ANIOND
o0
gel \rﬁGEmE
¥l et
S30IAZA ON 058300
0ET ¥3ny3s

Gom\\\\

¢t 3a00 F1dWVS

(B)[erA? HIBTT
dNIOND e 38vaviva
20
TIT AMOWIW
¥iv . A
SADIAZA ON HOSSIADONU
OTT ANTITO

Patent Application Publication

FROM
126

§ k.

SAMPLE CODE

Jan. 14,2021 Sheet 2 of 6 US 2021/0011695 A1l

/—‘520

122

OBJECTIVE MODEL QUALITY MODEL
200 210
. i
TAGS RATINGS
2 212
PERFORMANCE MODEL
220
H k
PERFORMANCE
ESTIMATE
222
RECOMMENDATION ENGINE
230
T0
126
DATABASE EXAMPLE CODE

118

124

US 2021/0011695 A1l

Jan. 14,2021 Sheet 3 of 6

Patent Application Publication

Z0¢
SOVL
a3.101d34d

3

£ Ol

00Z
140N

AILDAr80

00Z INIONT DONINIVHL

vie

SOVL
ONINIVHL

cle

44090
DONINIVHL

1€ VLVA ONINIVHL

US 2021/0011695 A1l

Jan. 14,2021 Sheet 4 of 6

Patent Application Publication

20v
SONILIVY
3.101d34d

¥ Old

oty
Viva
INIWILNGS

viv
VIVAYLEW
3400

4

(o4
13A0n
ALITIVAD

00F INIONT DONINIVHL

cle
44090
DONINIVHL

0Ly VIV{ ONINIVHL

US 2021/0011695 A1l

Jan. 14,2021 Sheet 5 of 6

Patent Application Publication

205
AONVINHOdH3d
d3.1o1d34dd

Y

G Old

0ce

1400N
FONVINHOAYEd

00G ANIDONT ONINIVYL

olg
Viva

AONYINHOLHA

vig

SONILYY

4

SOVL

LG VIVO ONINIVYL

Patent Application Publication Jan. 14, 2021 Sheet 6 of 6 US 2021/0011695 A1

/»"‘ 600

RECEIVE SAMPLE CODE FROM AUSER - 602

GENERATE A SET OF TAGS DESCRIBING ONE OR MORE 604
OBJECTIVES OF THE SAMPLE CODE BASED ON AN T
OBJECTIVE MODEL

GENERATE A SET OF RATINGS QUANTIFYING THE ONE OR 506
MORE OBJECTIVES OF THE SAMPLE CODE BASED ONA 7
QUALITY MODEL

GENERATE A PERFORMANCE ESTIMATE FOR THE SAMPLE
CODE BASED ON THE SET OF TAGS, THE SET OF RATINGS, |+ 608
AND A PERFORMANCE MODEL

DETERMINE EXAMPLE CODE THAT IMPLEMENTS THE ONE
OR MORE OBJECTIVES WITH BETTER RATINGS AND/OR |
BETTER PERFORMANCE THAN THE SAMPLE CODE

610

TRANSMIT THE EXAMPLE CODE TO THE USER -~ 012

FIG. 6

US 2021/0011695 Al

TECHNIQUES FOR AUTOMATICALLY
DETECTING PROGRAMMING
DEFICIENCIES

BACKGROUND

Field of the Various Embodiments

[0001] The various embodiments relate generally to com-
puter programming and software development and, more
specifically, to techniques for automatically detecting pro-
gramming deficiencies.

Description of the Related Art

[0002] Software engineering projects typically occur in
two distinct phases, commonly referred to as the “develop-
ment” phase and the “production” phase. In the development
phase, a computer programmer writes code for a software
application using a development environment. The devel-
opment environment includes computational resources that
the computer programmer can use to test whether the
software application meets various design objectives speci-
fied for the development phase. Once the software applica-
tion is determined to meet the design objectives, the soft-
ware engineering project moves to the production phase. In
the production phase, the software application is deployed
within a production environment that includes computa-
tional resources that users can use to access the software
application.

[0003] In most software engineering projects, the devel-
opment and production phases described above usually
occur iteratively. During a given iteration of the develop-
ment phase, the computer programmer may encounter a
programming problem that lacks a clear solution. In such
situations, the computer programmer may implement code
that only appears to address the programming problem.
Alternatively, the computer programmer may utilize Internet
resources to search for third-party code that potentially
addresses the programming problem. Both approaches may
result in code that appears to address the original problem,
but may inadvertently bring in a hidden defect into the
codebase. The third-party code is usually copied directly
into the software application and then tested to confirm that
the third-party code has sufficiently addressed the program-
ming problem. After completing the iteration of the devel-
opment phase, the software application, including the third-
party code, is deployed to the production environment as
part of a subsequent iteration of the production phase. Both
situations result in underperforming or “naive” code being
added to the system.

[0004] One drawback of the above approach is that such
naive code is oftentimes able to perform adequately in a
development environment but is not robust enough for
deployment within a production environment. Conse-
quently, a computer programmer who incorporates naive
code into a software application can inadvertently introduce
programming bugs into the software application that may
not become apparent until the software application is
deployed to users. Such programming bugs can cause the
software application to behave unpredictably or even crash.
Further, because the computer programmer did not write the
third-party code, or because the programmer has missed
subtle details in the implementation, the computer program-
mer usually has a limited understanding of how to repair the

Jan. 14, 2021

programming bugs. As a result, the software application can
be unavailable to consumers for extended periods of time
while the computer programmer debugs the software appli-
cation.

[0005] As the foregoing illustrates, what is needed in the
art are more effective techniques for controlling the quality
of code generated during software engineering projects.

BRIEF DESCRIPTION OF THE DRAWINGS

[0006] So that the manner in which the above recited
features of the various embodiments can be understood in
detail, a more particular description of the inventive con-
cepts, briefly summarized above, may be had by reference to
various embodiments, some of which are illustrated in the
appended drawings. It is to be noted, however, that the
appended drawings illustrate only typical embodiments of
the inventive concepts and are therefore not to be considered
limiting of scope in any way, and that there are other equally
effective embodiments.

[0007] FIG. 1 illustrates a system configured to implement
one or more aspects of the present embodiments;

[0008] FIG. 2 is a more detailed illustration of the quality
control engine of FIG. 1, according to various embodiments;
[0009] FIG. 3 illustrates how the objective model of FIG.
2 is generated via a series of training operations, according
to various embodiments;

[0010] FIG. 4 illustrates how the quality model of FIG. 2
is generated via a series of training operations, according to
various embodiments;

[0011] FIG. 5 illustrates how the performance model of
FIG. 2 is generated via a series of training operations,
according to various embodiments; and

[0012] FIG. 6 is a flow diagram of method steps for
generating and referencing example code that addresses a
programming problem, according to various embodiments.

DETAILED DESCRIPTION

[0013] In the following description, numerous specific
details are set forth to provide a more thorough understand-
ing of the various embodiments. However, it will be appar-
ent to one of skilled in the art that the inventive concepts
may be practiced without one or more of these specific
details.

[0014] As noted above, when developing a software appli-
cation, a computer programmer may encounter a program-
ming problem that the computer programmer does not know
how to address. In this situation, the computer programmer
sometimes decides to implement a “naive” solution that
appears to address the programming problem but may not
entirely address the programming problem. Alternatively,
the computer programmer may locate third-party code in the
public domain that similarly appears to address the program-
ming problem but may not entirely address the programming
problem. A naive solution appears to the programmer to
address the original problem entirely, but usually includes
one or more technical flaws that are not immediately appar-
ent. Such technical flaws may include security vulnerabili-
ties, performance bottlenecks, or otherwise unsafe or
unmaintainable code. The same concerns apply to the third-
party code: the third-party code may function adequately in
a development environment but can subsequently fail to
operate properly when incorporated into the software appli-
cation and deployed to a production environment, thereby

US 2021/0011695 Al

preventing consumers from using the software application.
Furthermore, because the computer programmer did not
write the third-party code, or because the programmer did
not consider one or more corner cases in the naive code, the
computer programmer may not be able to repair the software
application; or the effort required to effect such repair may
be unusually large.

[0015] To address these issues, various embodiments
include a quality control (QC) engine that analyzes sample
code provided by a user and then generates references to
example code that more effectively performs the same or
similar operations performed by the sample code. The QC
engine includes an objective model, a quality model, a
performance model, and a recommendation engine. The
objective model analyzes the sample code to generate one or
more tags indicating the intended objective(s) of the sample
code. The quality model analyzes the sample code to gen-
erate one or more ratings indicating the degree to which the
sample code achieves each intended objective. The perfor-
mance model analyzes the tags and the ratings and estimates
the performance of the sample code when executed in a
production environment. The recommendation engine que-
ries a database of code based on the tags, the ratings, and the
estimated performance of the sample code to determine
references to example code that achieves the same or similar
objectives(s) as the sample code, but with at least one of
higher ratings and greater performance. The reference to the
example code is provided to the user as a guidepost for
writing higher-quality code with greater performance.
[0016] At least one technological advantage of the dis-
closed techniques relative to the prior art is that the disclosed
techniques enable at least one of higher quality code and
higher performance code to be generated when developing
software applications. Among other things, the resulting
code is less likely to contain programming bugs that poten-
tially reduce performance when deployed to a production
environment. In addition, the disclosed techniques provide
computer programmers with more understanding about how
to improve code that has been predicted to perform poorly,
thereby enabling computer programmers to debug software
applications more quickly and more preemptively than is
possible with prior art approaches. These technological
advantages represent one or more technological advance-
ments over prior art approaches.

System Overview

[0017] FIG. 1 illustrates a system configured to implement
one or more aspects of the present embodiments. As shown,
a system 100 includes one or more clients 110 and one or
more servers 130 coupled together via a network 150. A
given client 110 or a given server 130 may be any techni-
cally feasible type of computer system, including a desktop
computer, a laptop computer, a mobile device, a virtualized
instance of a computing device, a distributed cloud-based
computer system, and so forth. Network 150 may be any
technically feasible set of interconnected communication
links, including a local area network (LAN), wide area
network (WAN), the World Wide Web, or the Internet,
among others.

[0018] As further shown, client 110 includes a processor
112, input/output (1/0) devices 114, and a memory 116,
coupled together. Processor 112 includes any technically
feasible set of hardware units configured to process data and
execute software applications. For example, processor 112

Jan. 14, 2021

could include one or more central processing units (CPUs).
/O devices 114 include any technically feasible set of
devices configured to perform at least one of input and
output operations. For example, /O devices 114 could
include at least one of a display device, a keyboard, and a
touchscreen, among others. Memory 116 includes any tech-
nically feasible storage media configured to store data and
software applications. For example, memory 116 could
include at least one of a hard disk, a random-access memory
(RAM) module, and a read-only memory (ROM), among
others. Memory 116 stores a database 118(0), a quality
control (QC) engine 120(0), sample code 122, and a graphi-
cal user interface (GUI) 126(0).

[0019] Database 118(0) is configured to store program
code and various metadata associated with that program
code. For example, database 118(0) could store one or more
Git repositories and associated metadata. QC engine 120(0)
is a software application that, when executed by processor
112, interoperates with a corresponding software application
executing on server 130 to analyze sample code 122, as
described in greater detail below. Sample code 122 includes
a set of instructions written in any technically feasible
programming language that can be executed to perform one
or more operations. GUI 126(0) includes graphical elements
that can be displayed to the user via a display device. During
operation, QC engine 120(0) obtains sample code 122 from
a user via GUI 126(0) and transmits sample code 122 to
server 130 for analysis and subsequent reporting on the
results of that analysis. In one embodiment, QC engine
120(0) obtains sample code 122 from a non-GUI interface,
such as a textual interface, a reference, a filesystem, and so
forth. As a general matter, the QC engine 120(0) delivers
results to one or more output devices, such as, for example,
a human- or computer-consumable output.

[0020] Server 130 includes a processor 132, I/O devices
134, and a memory 136, coupled together. Processor 132
includes any technically feasible set of hardware units
configured to process data and execute software applica-
tions, such as one or more CPUs. I/O devices 134 include
any technically feasible set of devices configured to perform
at least one of input and output operations, such as a display
device, a keyboard, or a touchscreen. Memory 136 includes
any technically feasible storage media configured to store
data and software applications, such as a hard disk, a RAM
module, or a ROM. Memory 136 includes a database 118(0),
a QC engine 120(1), example code 124, and GUI 126(1).
Database 118(1) is configured to store program code and
various metadata associated with that program code, similar
to database 118(0). QC engine 120(1) is a software appli-
cation that, when executed by processor 132, interoperates
with QC engine 120(0) discussed above.

[0021] In particular, QC engine 120(1) obtains sample
code 122 from QC engine 120(0) and analyzes sample code
122 to generate a set of tags that describe one or more
objectives associated with sample code 122. For example,
QC engine 120(1) could perform an inference operation or
alternative Machine Learning operation to generate a set of
tags that represent one or more low-level functions sample
code 122 performs or one or more high-level operations
associated with sample code 122. In various embodiments,
QC engine 120(1) may examine a collection of source code
by slicing the source code into multiple variable-length
windows, and then use a previously-trained sequence-to-vec
model to determine which tags to apply to the source code

US 2021/0011695 Al

window. In one embodiment, a given tag may indicate one
or more purposes sample code 122 is meant to accomplish.
QC engine 120(1) further analyzes sample code 122 to
assign a rating to each tag. For example, QC engine 120(1)
could perform an inference operation or alternative Machine
Learning operation to assign a rating to a given tag indicat-
ing the degree to which sample code 122 performs a given
function or operation associated with that tag.

[0022] Based on the generated tags and corresponding
ratings, QC engine 120(1) then estimates the performance of
sample code 122 in a production environment. For example,
QC engine 120(1) could perform an inference operation or
other Machine Learning operation to predict the number of
errors that could occur should sample code 122 be deployed
to the production environment. To make this prediction, QC
engine 120(1) uses the set of tags and ratings in sample code
122 and compares them to similarly tagged and rated code
associated with known production data. Finally, QC engine
120(1) suggests example code 124 that achieves similar
objectives based on the tags, ratings, and performance data
generated for sample code 122 and which has been previ-
ously submitted by another user. Example code 124 includes
instructions that, when executed, achieve similar objectives
as sample code 122 but have at least one of higher ratings
and better performance than sample code 122. QC engine
120(1) transmits example code 124 to the user for display
via GUI 126(0) to help guide the user in writing more robust
and performant code. Example code 124 can, at the discre-
tion of the user, be used to replace sample code 122.
[0023] As a general matter, database 118(0) and 118(1)
represent separate portions of a distributed storage entity.
Thus, for simplicity, databases 118(0) and 118(1) are col-
lectively referred to hereinafter as database 118. Similarly,
QC engine 120(0) and QC engine 120(1) represent separate
portions of a distributed software entity that is configured to
perform any and all of the inventive operations described
herein. Thus, for simplicity, QC engines 120(0) and 120(1)
are collectively referred to hereinafter as QC engine 120.
Likewise, GUIs 126(0) and 126(1) represent different
instances of a distributed GUI that is referred to hereinafter
as GUI 126. The various operations performed by QC
engine 120 when analyzing sample code 122 and generating
example code 124 are described in greater detail below in
conjunction with FIGS. 2-6.

Software Overview

[0024] FIG. 2 is a more detailed illustration of the quality
control engine of FIG. 1, according to various embodiments.
As shown, QC engine 120 includes an objective model 200,
a quality model 210, a performance model 220, and a
recommendation engine 230. Objective model 200, quality
model 210, and performance model 220 are predictive
classifiers that are trained, based on various types of training
data, to perform different classification procedures relative
to sample code 122. Performance model 220 is generally a
Machine Learning model that is modified via training to
increase the accuracy with which the performance of code
can be predicted. In one embodiment, performance model
220 may be an artificial neural network. The training of
objective model 200, quality model 210, and performance
model 220 is described in greater detail below in conjunc-
tion with FIGS. 3, 4, and 5, respectively.

[0025] The various models described herein are typically
trained asynchronously, using code and accompanying text

Jan. 14, 2021

obtained from Q&A systems. The accompanying text rep-
resents human interpretation of the matching code, and thus
can be considered a good representation of human knowl-
edge about the code. The trained model can perform a code
review task that a human programmer would do, but using
much larger knowledge-base. The models, once trained on
this Q&A dataset, can be used repeatedly to repeatedly
perform code reviews on submitted source code examples,
in effect automating detection of programming deficiencies.
Moreover, this approach offers an overview of the entire
codebase analyzed; offering an enterprise-wide (if used in an
enterprise), or potentially world-wide comparison. QC
engine 120 can offer suggestions to the programmers of
where to look to find a better approach at solving a particular
problem.

[0026] In operation, objective model 200 analyzes sample
code 122 to generate tags 202. For example, objective model
200 could be an artificial neural network that performs an
inference operation via a set of neural network layers to
assign a probability value to each possible tag. A given tag
202 indicates a particular objective that sample code 122
performs to some degree. For example, a given tag 202
could indicate that sample code 122 establishes a database
connection, performs a non-blocking HyperText Transfer
Protocol (HTTP) request, spawns a plurality of parallel
threads, connects to a remote server, and so forth. Tags 202
can further describe other attributes of sample code 122,
including a programming language used to write sample
code 122, one or more libraries implemented in sample code
122, and so forth. Objective model 200 provides tags 202 to
quality model 210, performance model 220, and recommen-
dation engine 230. In one embodiment, QC engine 120
stores tags in a database as pointers to the appropriate
window of the analyzed source code and the detected tags.

[0027] In conjunction with the operation of objective
model 200, quality model 210 analyzes sample code 122 and
generates a rating 212 for each tag 202. A given rating 212
is a value that indicates the degree to which sample code 122
achieves the objective associated with the corresponding tag
202. The degree to which sample code 122 achieves the
objective may indicate the technical elegance or rigorous-
ness of sample code 122. Technical elegance and rigorous-
ness, in turn, can indicate how well the code might perform
in a production environment, where low scores typically
suggest at least one of poor performance, unpredictable
behavior, and low maintainability, and high scores typically
indicate good performance, very little unpredictable behav-
ior, and easy maintainability. The technical elegance and
rigorousness are extracted by measuring the sentiment of the
text accompanying the source code in the Q&A examples.
QC engine 120 generally uses a hierarchy of heuristic rules
(e.g. scans for the word “error”, or “exception”), and a
well-known sentiment-detection algorithms to determine
whether the source code associated with the code human text
represents a good or bad programming approach

[0028] In exemplary operation of quality model 210, sup-
pose objective model 200 generates a tag 202 indicating that
one objective of sample code 122 is to parse an extensible
markup language (XML) file. Quality model 210 could
generate a rating 212 corresponding to that tag 202 that
quantifies how effectively sample code 122 parses XML
files. Quality model 210 can generate ratings using a variety
of techniques, once quality model 210 is trained. For
example, quality model 210 could perform an inference

US 2021/0011695 Al

operation via an artificial neural network to assign a prob-
ability value that a given rating corresponds to a given tag.
The process to generate the tags applies previously trained
quality model 210 to portions of source code examples
submitted for analysis; the model provides the mapping
from source code to the pair of tag, quality; where the tag
identifies the concept that the source code solves (e.g. parse
XML), and the quality is the combination of heuristic and
sentiment-analysis of the accompanying text in the training
set. Conceptually, a given rating 212 quantifies the quality of
a particular functional aspect of sample code 122. In one
embodiment, quality model 210 may determine a given
rating for a given tag based on a number of keywords (or
other syntactic elements) appearing in sample code 122 that
are associated with the given tag. Quality model 210 trans-
mits ratings 212 to performance model 220 and recommen-
dation engine 230.

[0029] Performance model 220 analyzes tags 202 and
ratings 212 and then generates performance estimate 222.
For example, performance model 220 could evaluate a
parametric equation based on one or more parametric values
that have been modified, via training, to cause the parametric
equation to provide accurate performance estimates. Perfor-
mance estimate 222 includes one or more quantities that
represent the predicted performance of sample code 122
when executed in a production environment. For example,
performance estimate 222 could include an estimated num-
ber of incidents predicted to occur during execution of
sample code 122 in the production environment, an esti-
mated amount of downtime predicted to occur during execu-
tion of sample code 122 in the production environment, and
so forth. Performance model 220 transmits performance
estimate 222 to recommendation engine 230.

[0030] Recommendation engine 230 obtains tags 202,
ratings 212, and performance estimate 222 associated with
sample code 122 and then queries database 118 to generate
example code 124. Database 118 includes a vast collection
of code and corresponding tags and ratings that are gener-
ated via objective model 200 and quality model 210, respec-
tively, in the manner described above. For a given portion of
code, database 118 also includes performance data describ-
ing the performance of the given portion of code when tested
or executed in a production environment. Example code 124
is generally associated with a similar set of tags as sample
code 122. However, example code 124 performs the various
objectives described by those tags with at least one of better
ratings and better performance than sample code 122. It is
possible that sample code 124 example implements one
concept exceptionally well, but another concept exception-
ally badly. Because the analysis is performed on windows of
code (essentially selections of several source code lines), the
system is able to point to specific portions of a source code
example. This is particularly important for large source code
examples, which may contain thousands of lines. Accord-
ingly, example code 124 generally represents a higher-
quality version of sample code 122 that may perform better
than sample code 122 in a production environment. In one
embodiment, recommendation engine 230 may combine one
or more metrics and then evaluate example code 124 based
on a combined metric to determine whether example code
124 is more performant than sample code 122 and should be
recommended. Recommendation engine 230 transmits
example code 124 to the user to help guide the user in
producing high-quality code that is more likely to perform

Jan. 14, 2021

well in production. In some cases, example code 124 can be
implemented in place of sample code 122 with little or no
modification.

[0031] In one embodiment, database 118 may include
code associated with an organization to which the user
belongs. For example, database 118 could include one or
more code repositories associated with a private company
where user participates in software engineering projects. In
another embodiment, database 118 may include publicly
available code that is not specifically associated with any
single organization. For example, database 118 could
include one or more code repositories associated with a large
number of users with no specific relation to one another. In
either case, the disclosed techniques provide users with
effective tools for sharing high-quality knowledge related to
solving computer programming problems. Database 118 is
generally populated with code and corresponding tags, rat-
ings, and performance data during training of objective
model 200, quality model 210, and performance model 220.
The training of these three models is described in greater
detail below.

Model Training Overview

[0032] FIG. 3 illustrates how the objective model of FIG.
2 is generated via a series of training operations, according
to various embodiments. As shown, a training engine 300 is
configured to train objective model 200 based on training
data 310. Training data 310 includes training code 312 and
training tags 314. Training code 312 includes snippets of
code that perform various operations. Training tags 314
describe attributes of those various operations, including one
or more objectives associated with training code 312. For
example, a given portion of training code 312 could parse a
file using a regular expression and a corresponding tag 314
could include the text “regex parsing” to describe that the
portion of training code 312 is meant to perform a regex
parsing operation.

[0033] In one embodiment, training data 310 may be
sourced from publicly accessible question and answer
(Q&A) websites that allow users to ask programming ques-
tions and obtain information and examples of code in
response from the wider programming community. A given
Q&A website may provide users with access to individual
programming questions and associated source code and one
or more user-generated tags associated with those program-
ming questions and source code.

[0034] During training, training engine 300 causes objec-
tive model 200 to analyze training code 312 and generate
predicted tags 302. Training engine 300 compares predicted
tags 302 to training tags 314 to determine the degree to
which predicted tags 302 are similar to training tags 314 for
a given portion of training code 312. Training engine 300
then modifies objective model 200 in order to reduce an
error or difference between predicted tags 302 and training
tags 314. As a general matter, objective model 200 is a
Machine Learning model that can be modified, via training
engine 300, to increase the accuracy with which objective
model 200 classifies portions of code using tags.

[0035] In one embodiment, objective model 200 may
implement Natural Language Processing to analyze training
code 312. For example, objective model 200 could imple-
ment a sequence-to-vector (seq2vec) encoder to encode
training code 312 into one or more vectors and then map
those vectors to one or more predicted tags 302. In another

US 2021/0011695 Al

embodiment, objective model 200 may include an artificial
neural network, and training engine 300 may implement a
backpropagation approach to modify one or more weights
included in objective model 200 to reduce an error between
predicted tags 302 and training tags 314. Persons skilled in
the art will understand that any technically feasible Machine
Learning system can be used to implement objective model
200. Quality model 210 is generated based on some of the
same training data as objective model 200, as described in
greater detail below in conjunction with FIG. 4.

[0036] FIG. 4 illustrates how the quality model of FIG. 2
is generated via a series of training operations, according to
various embodiments. As shown, a training engine 400 is
configured to train quality model 210 based on training data
410. Training data 410 includes training code 312 of FIG. 3
as well as code metadata 414. Code metadata 414 includes
human-generated text that is broadly related to training code
312 in some capacity. For example, code metadata 414 could
be a functional description of training code 312, an expla-
nation of the positive and negative attributes of training code
312, a comment, question, compliment, criticism, or other
expression related to training code 312, an expression of
some kind directed towards the author or a reader of training
code 312, a description of a flaw associated with training
code 312, an explanation of contexts where training code
312 should or should not be implemented, and so forth.

[0037] In one embodiment, code metadata 414 may be
sourced from the publicly accessible Q&A websites men-
tioned above. A given Q&A website may permit users to
post code samples along with descriptive text associated
with those code samples. For example, a user could post a
snippet of non-functional code along with a description of an
error that occurs when the code is executed. In another
example, a user could post a snippet of code in response to
a programming question along with a description of how the
posted code addresses the programming question. In yet
another example, a user could post a comment to a posted
snippet of code highlighting at least one of the strengths and
weaknesses of the posted snippet of code. Code metadata
414 generally includes any text that is contextually relevant
to a corresponding portion of training code 312.

[0038] During training, training engine 400 performs a
sentiment analysis with code metadata 414 relative to dif-
ferent portions of training code 312 to determine the senti-
ment of users with respect to those portions of training code
312. Sentiment analysis provides one of the sources for the
ratings: a code sample from a Q&A website with mainly
negative sentiment in its description suggests that it is not
advisable to deploy similar code to production environment;
consequently, the rating of similar code will be low. Senti-
ment analysis includes a number of well-known computa-
tional techniques that generally fall within the field of
Natural Language Processing. Accordingly, sentiment
analysis is not described in detail here. Training engine 400
performs the sentiment analysis to generate sentiment data
416 for a given portion of training code 312. Sentiment data
416 rates the sentiment of users towards the given portion of
training code 312 across one or more categories. Those
categories may, in some embodiments, correspond to the
various objectives associated with tags 202. An example of
sentiment data 416 associated with a given portion of
training code 312 is shown below in Table 1.

Jan. 14, 2021

TABLE 1
Negative Zero Positive
Category Sentiment Sentiment Sentiment
Python 120 220 460
Iterators 570 30 50
Multithreading 140 80 450
[0039] As shown, training engine 400 determines that the

given portion of training code 312 is regarded highly in the
programming community as an example of code written in
the Python programming language but is regarded poorly in
the programming community as an example of proper usage
ofiterators. The portion of training code 312 also appears to
exemplify a correct implementation of multithreading.
Training engine 400 can implement any technically feasible
form of sentiment analysis in order to determine the senti-
ment expressed in code metadata 414 relative to a set of
possible categories. In one embodiment, training engine 400
weights the sentiment expressed by any given user towards
a portion of code based on a reputation metric associated
with the user.

[0040] In conjunction with performing the above senti-
ment analysis, training engine 400 also causes quality model
210 to analyze training code 312 to generate predicted
ratings 402. Predicted ratings 402 are generally similar to
sentiment data 416 but are generated by quality model 210
based solely on training code 312. Training engine 400
compares predicted ratings 402 to sentiment data 416 to
determine the degree to which predicted ratings 402 are
similar to sentiment data 416 for a given portion of training
code 312. Training engine 400 then modifies quality model
210 in order to reduce an error or difference between
predicted ratings 402 and sentiment data 416. Like objective
model 200 discussed previously, quality model 210 is a
Machine Learning model that can be modified through
training to increase the accuracy with which ratings are
generated.

[0041] In one embodiment, training engine 400 may
implement Natural Language Processing to analyze code
metadata 414 and generate sentiment data 416. For example,
training engine 400 could implement a word-to-vector
(seq2vec) encoder to perform a sentiment analysis with code
metadata 414. In doing so, training engine 400 could encode
code metadata 414 into a feature space and then identify
regions of the feature space associated with positive senti-
ment and regions of the feature space associated with
negative sentiment. In another embodiment, quality model
210 may also implement at least one of Natural Language
Processing and Machine Learning techniques to generate
predicted ratings 402. As a general matter, Persons skilled in
the art will understand that any technically feasible Machine
Learning system can be used to implement quality model
210 and that training engine 400 may implement any tech-
nically feasible training technique to train quality model
210.

[0042] Referring generally to FIGS. 3-4, via the above
techniques, objective model 200 and quality model 210 are
trained to generate tags 202 and ratings 212 that reflect the
overarching purpose and quality associated with sample
code 122, respectively. Performance model 220 can then
estimate the performance of sample code 122 in a produc-
tion environment based on tags 202 and ratings 212, as

US 2021/0011695 Al

previously discussed. The training of performance model
220 is described in greater detail below in conjunction with
FIG. 5.

[0043] FIG. 5 illustrates how the performance model of
FIG. 2 is generated via a series of training operations,
according to various embodiments. As shown, a training
engine 500 is configured to train performance model 220
based on training data 510. Training data 510 is generated
based on a codebase that includes one or more code reposi-
tories and a version modification history associated with
each code repository. For example, training data 510 could
be generated based on a codebase that includes a Git
repository along with a commit history associated with that
Git repository.

[0044] Training data 510 includes tags 512, ratings 514,
and performance data 516. Objective model 200 generates
tags 512 based on a given portion of code included in the
codebase using the technique described above in conjunc-
tion with FIGS. 2-3. Quality model 210 generates ratings
514 based on a given portion of code included in the
codebase using the technique described above in conjunc-
tion with FIGS. 2 and 4. Performance data 516 is generated
for a given portion of code included in the codebase by
running one or more tests with the given portion of code
within a production environment. Those tests could include,
for example, unit tests, integration tests, and other types of
tests. Performance data 516 includes data that describes the
number of errors that occur when another system containing
code of similar tags and ratings is executed, the duration of
downtime associated with each error, and other metrics that
reflect how code performs in a production environment. In
one embodiment, performance data 516 may indicate a
marked increase in the performance of a given portion of
code that is correlated with a specific modification made to
that portion of code.

[0045] During training, training engine 500 causes perfor-
mance model 220 to analyze tags 512 and ratings 514
associated with a given portion of code to generate predicted
performance 502. For example, training engine 500 could
compute a weighted sum of values derived from tags 512
and ratings 514, where the weightings used are training via
a Machine Learning approach. The analysis of the tags
simply queries the database of other submitted code to find
instances that have the same tag, but better quality rating.
Training engine 500 compares predicted performance 502 to
the performance data 516 associated with the given portion
of code to determine the degree to which predicted perfor-
mance 502 is similar to performance data 516. Training
engine 500 then modifies performance model 220 in order to
reduce an error or difference between predicted performance
502 and performance data 516. Performance model 220 is
generally a Machine Learning model that is modified via
training to increase the accuracy with which the perfor-
mance of code can be predicted. In one embodiment, per-
formance model 220 may be an artificial neural network that
is trained via backpropagation based on the difference
between predicted performance 502 and performance data
516.

[0046] Referring generally to FIGS. 3-5, the disclosed
techniques for training objective model 200, quality model
210, and performance model 220 can be implemented with
any technically feasible type of training data. For example,
at least one of objective model 200 and quality model 210
could be trained based on code, tags, and metadata derived

Jan. 14, 2021

from one or more Q&A websites designed to help answer
programming questions, as mentioned above. Performance
model 220 could be trained based on different versions of
code files included within one or more code repositories, as
also mentioned above. As a general matter, any of the
models described herein can be trained using any publicly or
privately available source of program code and contextually
relevant descriptions thereof and using any technically fea-
sible training technique.

[0047] QC engine 120 implements objective model 200,
quality model 210, and performance model 220 in order to
characterize the purpose, quality, and performance of sample
code 122 prior to sample code 122 being deployed to a
production environment. Based on that characterization, QC
engine 120 can map sample code 122 to example code 124
that potentially serves a similar purpose as sample code 122
but with a more robust and production-ready implementa-
tion. Various steps performed by QC engine 120 when
generating example code 124 are described in greater detail
below in conjunction with FIG. 6.

Procedure for Suggesting Example Code or Other
Submitted Code

[0048] FIG. 6 is a flow diagram of method steps for
suggesting example code that addresses a programming
problem, according to various embodiments. Although the
method steps are described in conjunction with the systems
of FIGS. 1-5, persons skilled in the art will understand that
any system configured to perform the method steps in any
order falls within the scope of the present embodiments.
[0049] As shown, a method 600 begins at step 602, where
QC engine 120 of FIG. 2 receives sample code 122 from a
user. In one embodiment, QC engine 120 may generate and
display GUI 126 to obtain sample code 122 from the user.
GUI 126 could be, for example, a web page that allows the
user to input and submit sample code 122. GUI 126 can be
generated by either or both of client 110 and server 130.
[0050] At step 604, QC engine 120 generates a set of tags
describing one or more objectives of sample code 122 based
on objective model 200. Sample code 122 includes program
code that is generated by a user to address a programming
problem. The set of tags includes portions of text that
describe various objectives of sample code 122. A given tag
can also indicate one or more operations that sample code
122 performs, a programming language used to write sample
code 122, a library used by sample code 122, and other
attributes of sample code 122. Objective model 200 can be
trained to generate tags that reflect objectives of code using
the technique described above in conjunction with FIG. 3.
[0051] At step 606, QC engine 120 generates a set of
ratings quantifying the one or more objectives of sample
code 122 based on quality model 210. Each rating quantifies
the degree to which sample code 122 achieves one of the
objectives described via the set of tags generated at step 602.
Quality model 210 is trained to quantify how well sample
code 122 performs the different objectives via a training
technique that involves performing a sentiment analysis on
metadata associated with code to evaluate the quality of that
code. Quality model 210 is then trained to recognize code
that is considered “high” quality versus code that is consid-
ered “low” quality across a range of categories associated
with the set of tags. Quality model 210 is trained to generate
ratings based on code using the technique described above
in conjunction with FIG. 4.

US 2021/0011695 Al

[0052] At step 608, QC engine 120 generates a perfor-
mance estimate for sample code 122 based on the set of tags
and the set of ratings generated at steps 602 and 604,
respectively, and based on a performance model. The per-
formance estimate includes metrics that reflect how well
sample code 122 may perform when deployed to a produc-
tion environment. For example, the performance estimate
could indicate a predicted number of incidents over a time
interval. Performance model 220 is trained to map sets of
tags and sets of ratings to performance estimates based on
tags and rating generated for code included in a codebase
that is tested periodically to generate real performance data.
Performance model 220 is trained to generate performance
estimates for code using the technique described above in
conjunction with FIG. 5.

[0053] At step 610, recommendation engine 230 within
QC engine 120 determines example code 124 that imple-
ments the one or more objectives associated with sample
code 122 with at least one of better ratings and better
performance than sample code 122. In so doing, QC engine
120 queries database 118 to locate code that is associated
with the set of tags and also associated with a set of ratings
that exceeds those generated for sample code 122 and, in
some instances, also associated with performance data that
exceeds the performance estimate generated at step 608.
[0054] At step 612, QC engine 120 transmits example
code or references to example code that better implements
sample code 124 to the user. For example, QC engine 120
could provide example code 124 to the user via GUI 126.
Alternatively, QC engine 120 can provide the same refer-
ences in a format suitable for consumption by other com-
puter systems. The computer-consumable output can be used
to construct complex continuous integration pipelines. In
this manner, QC engine 120 facilitates the user with guid-
ance regarding how to perform various programming tasks
in a manner that is accepted by the wider programming
community. Further, QC engine 120 provides insight to the
user regarding how to compose more robust and performant
code that operates more effectively when deployed to a
production environment than sample code 122.

[0055] In sum, various embodiments include a QC engine
that analyzes sample code provided by a user and then
generates example code that more effectively performs the
same or similar operations performed by the sample code.
The QC engine includes an objective model, a quality
model, a performance model, and a recommendation engine.
The objective model analyzes the sample code to generate
one or more tags indicating the intended objective(s) of the
sample code. The quality model analyzes the sample code to
generate one or more ratings indicating the degree to which
the sample code achieves each intended objective. The
performance model analyzes the tags and the ratings and
estimates the performance of the sample code when
executed in a production environment. The recommendation
engine queries a database of code based on the tags, the
ratings, and the estimated performance of the sample code to
determine example code that achieves the same or similar
objectives(s) as the sample code, but with at least one of
higher ratings and greater performance. The example code is
provided to the user as guidepost for writing higher-quality
code with greater performance.

[0056] At least one technological advantage of the dis-
closed techniques relative to the prior art is that the disclosed
techniques enable at least one of higher quality and higher

Jan. 14, 2021

performance code to be generated when developing software
applications. Among other things, the resulting code is less
likely to contain programming bugs that potentially reduce
performance when deployed to a production environment. In
addition, the disclosed techniques provide computer pro-
grammers with more understanding about how to improve
code that has been predicted to perform poorly, thereby
providing a tool for computer programmers to debug soft-
ware applications more quickly and more preemptively than
is possible with prior art approaches. These technological
advantages represent one or more technological advance-
ments over prior art approaches.

[0057] 1. Some embodiments include a computer-imple-
mented method for determining source code that can replace
defective portions of a software application, the method
comprising determining a first objective for a first portion of
program code, computing a first metric that indicates a
degree to which the first portion of program code achieves
the first objective, determining a second portion of program
code based on the first objective and the first metric, wherein
the second portion of program code is associated with a
second metric that indicates a degree to which the second
portion of program code achieves the first objective, and the
second metric is greater than the first metric, and transmit-
ting an identifier corresponding to the second portion of
program code to a user.

[0058] 2. The computer-implemented method of clause 1,
wherein determining the first objective for the first portion of
program code comprises determining at least one operation
that is performed when the first portion of program code is
executed.

[0059] 3. The computer-implemented method of any of
clauses 1-2, wherein determining the first objective for the
first portion of program code comprises performing a Natu-
ral Language Processing operation using the first portion of
program code to generate a first classification for the first
portion of program code corresponding to the first objective.

[0060] 4. The computer-implemented method of any of
clauses 1-3, further comprising training a Machine Learning
model to determine the first objective based on training data
that includes one or more portions of program code and one
or more tags, wherein a given tag included in the one or
more tags indicates an objective associated with a given
portion of program code included in the one or more
portions of program code.

[0061] 5. The computer-implemented method of any of
clauses 1-4, wherein the Machine Learning model, once
trained, is able to generate the one or more tags based on the
one or more portions of program code.

[0062] 6. The computer-implemented method of any of
clauses 1-5, wherein computing the first metric comprises
determining a number of syntactic elements included in the
first portion of program code that are associated with the first
objective.

[0063] 7. The computer-implemented method of any of
clauses 1-6, further comprising training a Machine Learning
model to compute the first metric by performing a sentiment
analysis using metadata associated with a third portion of
program code to generate a sentiment value.

[0064] 8. The computer-implemented method of any of
clauses 1-7, wherein the Machine Learning model, once
trained, is able to generate the sentiment value based on the
third portion of code.

US 2021/0011695 Al

[0065] 9. The computer-implemented method of any of
clauses 1-8, further comprising computing a second metric
that indicates an expected number of errors generated when
the first portion of program code is executed in a production
environment, wherein the second portion of program code is
determined based further on the second metric.

[0066] 10. The computer-implemented method of any of
clauses 1-9, further comprising training a first Machine
Learning model to compute the second metric based on
performance data indicating a number of errors that occur
when a third portion of program code is executed in the
production environment, wherein the first Machine Learning
model, once trained, is able to generate the performance data
based on one or more objectives specified for the third
portion of program code.

[0067] 11. Some embodiments include a non-transitory
computer-readable medium storing program instructions
that, when executed by a processor, cause the processor to
determine source code that can replace defective portions of
a software application by performing the steps of determin-
ing a first objective that is at least partially achieved by a first
portion of program code, computing a first metric that
indicates a degree to which the first portion of program code
achieves the first objective, determining a second portion of
program code based on the first objective and the first
metric, wherein the second portion of program code is
associated with a second metric that indicates a degree to
which the second portion of program code achieves the first
objective, and the second metric is greater than the first
metric, and transmitting an identifier corresponding to the
second portion of program code to a user interface.

[0068] 12. The non-transitory computer-readable medium
of clause 11, wherein the step of determining the first
objective for the first portion of program code comprises
determining at least one function included in the first portion
of program code.

[0069] 13. The non-transitory computer-readable medium
of any of clauses 11-12, wherein the step of determining the
first objective for the first portion of program code com-
prises classifying the first portion of program code into at
least one category corresponding to the first objective.
[0070] 14. The non-transitory computer-readable medium
of any of clauses 11-13, further comprising the step of
training a first model to determine the first objective based
on training data that includes one or more portions of
program code and one or more tags, wherein a given tag
included in the one or more tags indicates an objective
associated with a given portion of program code included in
the one or more portions of program code, wherein the first
model, once trained, is able to generate the one or more tags
based on the one or more portions of program code.
[0071] 15. The non-transitory computer-readable medium
of any of clauses 11-14, wherein the step of computing the
first metric comprises determining a number of syntactic
elements included in the first portion of program code that
are associated with the first objective.

[0072] 16. The non-transitory computer-readable medium
of any of clauses 11-15, further comprising the step of
training a first model to compute the first metric by per-
forming a sentiment analysis using metadata associated with
a third portion of program code to generate a sentiment
value, wherein the first model, once trained, is able to
generate the sentiment value based on the third portion of
code.

Jan. 14, 2021

[0073] 17. The non-transitory computer-readable medium
of any of clauses 11-16, further comprising the step of
computing a second metric that indicates an expected num-
ber of errors generated when the first portion of program
code is executed in a production environment, wherein the
second portion of program code is determined based further
on the second metric.

[0074] 18. The non-transitory computer-readable medium
of any of clauses 11-17, further comprising the step of
training a first model to compute the second metric based on
performance data indicating a number of errors that occur
when a third portion of program code is executed in the
production environment, wherein the first model, once
trained, is able to generate the performance data based on
one or more objectives specified for the third portion of
program code.

[0075] 19. The non-transitory computer-readable medium
of any of clauses 11-18, wherein the step of determining the
second portion of program code comprises querying a code
database using the first objective to determine at least one
portion of program code that meets the first objective to a
greater degree than the first portion of program codes meets
the first objective.

[0076] 20. Some embodiments include a system, compris-
ing a memory storing a software application, and a processor
that, when executing the software application, is configured
to perform the steps of determining a first objective for a first
portion of program code, computing a first metric that
indicates a degree to which the first portion of program code
achieves the first objective, determining a second portion of
program code based on the first objective and the first
metric, wherein the second portion of program code is
associated with a second metric that indicates that the
second portion of program code achieves the first objective
to a greater degree than the first portion of program code,
and transmitting an identifier corresponding to the second
portion of program code to a user interface.

[0077] 21. The system of clause 20, wherein the reference
to the second portion of program code comprise a uniform
resource locator through which the second portion of pro-
gram code can be accessed.

[0078] Any and all combinations of any of the claim
elements recited in at least one of the claims and any
elements described in this application, in any fashion, fall
within the contemplated scope of the present invention and
protection.

[0079] The descriptions of the various embodiments have
been presented for purposes of illustration, but are not
intended to be exhaustive or limited to the embodiments
disclosed. Many modifications and variations will be appar-
ent to those of ordinary skill in the art without departing
from the scope and spirit of the described embodiments.
[0080] Aspects of the present embodiments may be
embodied as a system, method or computer program prod-
uct. Accordingly, aspects of the present disclosure may take
the form of an entirely hardware embodiment, an entirely
software embodiment (including firmware, resident soft-
ware, micro-code, etc.) or an embodiment combining soft-
ware and hardware aspects that may all generally be referred
to herein as a “module,” a “system,” or a “computer.” In
addition, any hardware technique, software technique, pro-
cess, function, component, engine, module, or system
described in the present disclosure may be implemented as
a circuit or set of circuits. Furthermore, aspects of the

US 2021/0011695 Al

present disclosure may take the form of a computer program
product embodied in one or more computer readable medi-
um(s) having computer readable program code embodied
thereon.

[0081] Any combination of one or more computer read-
able medium(s) may be utilized. The computer readable
medium may be a computer readable signal medium or a
computer readable storage medium. A computer readable
storage medium may be, for example, but not limited to, an
electronic, magnetic, optical, electromagnetic, infrared, or
semiconductor system, apparatus, or device, or any suitable
combination of the foregoing. More specific examples (a
non-exhaustive list) of the computer readable storage
medium would include the following: an electrical connec-
tion having one or more wires, a portable computer diskette,
a hard disk, a random access memory (RAM), a read-only
memory (ROM), an erasable programmable read-only
memory (EPROM or Flash memory), an optical fiber, a
portable compact disc read-only memory (CD-ROM), an
optical storage device, a magnetic storage device, or any
suitable combination of the foregoing. In the context of this
document, a computer readable storage medium may be any
tangible medium that can contain, or store a program for use
by or in connection with an instruction execution system,
apparatus, or device.

[0082] Aspects of the present disclosure are described
above with reference to at least one of the flowchart illus-
trations and block diagrams of methods, apparatus (systems)
and computer program products according to embodiments
of the disclosure. It will be understood that each block of the
flowchart illustrations, each block of the block diagrams,
and combinations of blocks in at least one of the flowchart
illustrations and block diagrams, can be implemented by
computer program instructions. These computer program
instructions may be provided to a processor of a general
purpose computer, special purpose computer, or other pro-
grammable data processing apparatus to produce a machine.
The instructions, when executed via the processor of the
computer or other programmable data processing apparatus,
enable the implementation of the functions/acts specified in
at least one of the flowchart and block diagram block or
blocks. Such processors may be, without limitation, general
purpose processors, special-purpose processors, application-
specific processors, or field-programmable gate arrays.

[0083] The flowchart and block diagrams in the figures
illustrate the architecture, functionality, and operation of
possible implementations of systems, methods and computer
program products according to various embodiments of the
present disclosure. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or
portion of code, which comprises one or more executable
instructions for implementing the specified logical function
(s). It should also be noted that, in some alternative imple-
mentations, the functions noted in the block may occur out
of the order noted in the figures. For example, two blocks
shown in succession may, in fact, be executed substantially
concurrently, or the blocks may sometimes be executed in
the reverse order, depending upon the {functionality
involved. It will also be noted that each block included in
one or more of the block diagrams and flowchart illustration,
and combinations of blocks in one or more of the block
diagrams and flowchart illustration, can be implemented by
special purpose hardware-based systems that perform the

Jan. 14, 2021

specified functions or acts, or combinations of special pur-
pose hardware and computer instructions.

[0084] While the preceding is directed to embodiments of
the present disclosure, other and further embodiments of the
disclosure may be devised without departing from the basic
scope thereof, and the scope thereof is determined by the
claims that follow.

What is claimed is:

1. A computer-implemented method for determining
source code that can replace deficient portions of a software
application, the method comprising:

determining a first objective for a first portion of program

code;

computing a first metric that indicates a degree to which

the first portion of program code achieves the first
objective;

determining a second portion of program code based on

the first objective and the first metric, wherein the
second portion of program code is associated with a
second metric that indicates a degree to which the
second portion of program code achieves the first
objective, and the second metric is greater than the first
metric; and

transmitting an identifier corresponding to the second

portion of program code to a user.

2. The computer-implemented method of claim 1,
wherein determining the first objective for the first portion of
program code comprises determining at least one operation
that is performed when the first portion of program code is
executed.

3. The computer-implemented method of claim 1,
wherein determining the first objective for the first portion of
program code comprises performing a Natural Language
Processing operation using the first portion of program code
to generate a first classification for the first portion of
program code corresponding to the first objective.

4. The computer-implemented method of claim 1, further
comprising training a Machine Learning model to determine
the first objective based on training data that includes one or
more portions of program code and one or more tags,
wherein a given tag included in the one or more tags
indicates an objective associated with a given portion of
program code included in the one or more portions of
program code.

5. The computer-implemented method of claim 4,
wherein the Machine Learning model, once trained, is able
to generate the one or more tags based on the one or more
portions of program code.

6. The computer-implemented method of claim 1,
wherein computing the first metric comprises determining a
number of syntactic elements included in the first portion of
program code that are associated with the first objective.

7. The computer-implemented method of claim 1, further
comprising training a Machine Learning model to compute
the first metric by performing a sentiment analysis using
metadata associated with a third portion of program code to
generate a sentiment value.

8. The computer-implemented method of claim 7,
wherein the Machine Learning model, once trained, is able
to generate the sentiment value based on the third portion of
code.

9. The computer-implemented method of claim 1, further
comprising computing a second metric that indicates an
expected number of errors generated when the first portion

US 2021/0011695 Al

of program code is executed in a production environment,
wherein the second portion of program code is determined
based further on the second metric.
10. The computer-implemented method of claim 9, fur-
ther comprising training a first Machine Learning model to
compute the second metric based on performance data
indicating a number of errors that occur when a third portion
of program code is executed in the production environment,
wherein the first Machine Learning model, once trained, is
able to generate the performance data based on one or more
objectives specified for the third portion of program code.
11. A non-transitory computer-readable medium storing
program instructions that, when executed by a processor,
cause the processor to determine source code that can
replace deficient portions of a software application by per-
forming the steps of:
determining a first objective that is at least partially
achieved by a first portion of program code;

computing a first metric that indicates a degree to which
the first portion of program code achieves the first
objective;

determining a second portion of program code based on

the first objective and the first metric, wherein the
second portion of program code is associated with a
second metric that indicates a degree to which the
second portion of program code achieves the first
objective, and the second metric is greater than the first
metric; and

transmitting an identifier corresponding to the second

portion of program code to a user interface.

12. The non-transitory computer-readable medium of
claim 11, wherein the step of determining the first objective
for the first portion of program code comprises determining
at least one function included in the first portion of program
code.

13. The non-transitory computer-readable medium of
claim 11, wherein the step of determining the first objective
for the first portion of program code comprises classifying
the first portion of program code into at least one category
corresponding to the first objective.

14. The non-transitory computer-readable medium of
claim 11, further comprising the step of training a first model
to determine the first objective based on training data that
includes one or more portions of program code and one or
more tags, wherein a given tag included in the one or more
tags indicates an objective associated with a given portion of
program code included in the one or more portions of
program code, wherein the first model, once trained, is able
to generate the one or more tags based on the one or more
portions of program code.

15. The non-transitory computer-readable medium of
claim 11, wherein the step of computing the first metric
comprises determining a number of syntactic elements

Jan. 14, 2021

included in the first portion of program code that are
associated with the first objective.

16. The non-transitory computer-readable medium of
claim 11, further comprising the step of training a first model
to compute the first metric by performing a sentiment
analysis using metadata associated with a third portion of
program code to generate a sentiment value, wherein the first
model, once trained, is able to generate the sentiment value
based on the third portion of code.

17. The non-transitory computer-readable medium of
claim 11, further comprising the step of computing a second
metric that indicates an expected number of errors generated
when the first portion of program code is executed in a
production environment, wherein the second portion of
program code is determined based further on the second
metric.

18. The non-transitory computer-readable medium of
claim 17, further comprising the step of training a first model
to compute the second metric based on performance data
indicating a number of errors that occur when a third portion
of program code is executed in the production environment,
wherein the first model, once trained, is able to generate the
performance data based on one or more objectives specified
for the third portion of program code.

19. The non-transitory computer-readable medium of
claim 11, wherein the step of determining the second portion
of program code comprises querying a code database using
the first objective to determine at least one portion of
program code that meets the first objective to a greater
degree than the first portion of program codes meets the first
objective.

20. A system, comprising:

a memory storing a software application; and

a processor that, when executing the software application,

is configured to perform the steps of:

determining a first objective for a first portion of
program code,

computing a first metric that indicates a degree to
which the first portion of program code achieves the
first objective,

determining a second portion of program code based on
the first objective and the first metric, wherein the
second portion of program code is associated with a
second metric that indicates that the second portion
of program code achieves the first objective to a
greater degree than the first portion of program code,
and

transmitting an identifier corresponding to the second
portion of program code to a user interface.

21. The system of claim 20, wherein the identifier corre-
sponding to the second portion of program code comprise a
uniform resource locator through which the second portion
of program code can be accessed.

#* #* #* #* #*

